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Introduction
Technological advancements have spurred the rapid development 
of nanotechnology, expanding its applications across diverse sci-
entific fields.1,2 Biomedical sciences, in particular, have benefited 
from nanotechnology, leveraging its potential for pathogen detec-
tion and disease diagnosis.3 Neglected Tropical Diseases (NTDs) 
have garnered global attention due to their severe symptoms and 
health implications, necessitating innovative treatment approach-
es. Nanomaterial-based theranostic tools have emerged as promis-
ing solutions for diagnosing and treating NTDs.4,5

Nanomaterials offer significant advantages in diagnosing and 

treating tropical diseases due to their unique physical and chemical 
properties.6,7 Their small size, typically ranging from one to 100 
nanometers, allows them to interact effectively at the molecular 
and cellular levels, which is crucial for targeting pathogens and 
delivering therapeutic agents precisely where needed.8–10 This pre-
cision is particularly advantageous for NTDs, which often require 
targeted and efficient treatment strategies.11–15

One key feature that makes nanomaterials suitable for biomedi-
cal applications is their large surface area-to-volume ratio.15,16 
This property enhances their capacity to carry and deliver thera-
peutic substances such as drugs, peptides, or genetic materials.17–20 
Nanomaterials can encapsulate these substances, protecting them 
from degradation in the body and enabling controlled release over 
time, which can improve treatment efficacy and reduce side ef-
fects.13,14

Moreover, nanomaterials can be engineered to possess specific 
chemical compositions and surface functionalities, allowing for 
targeted delivery to diseased tissues or cells while minimizing im-
pact on healthy tissues.21–23 This targeted delivery reduces system-
ic toxicity and enhances the overall safety profile of treatments, 
addressing a significant challenge posed by traditional therapies 
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for NTDs.24,25

In diagnostics, nanomaterials can be designed to detect specif-
ic biomarkers or pathogens with high sensitivity and specificity. 
Functionalized nanoparticles can selectively bind to disease-spe-
cific molecules, facilitating early detection and accurate diagno-
sis even at low concentrations.26–28 This capability is crucial for 
improving the timeliness of treatment initiation and monitoring 
disease progression.29,30

Nanoparticles (NPs) constructed from biodegradable materials 
such as natural and synthetic polymers and lipids are particularly 
valuable in biomedicine.31,32 Their high biocompatibility allows 
them to carry hydrophilic and lipophilic drugs, enhancing the ther-
apeutic delivery systems used for NTD treatments.33–35

According to the World Health Organization (WHO), NTDs en-
compass a group of 20 diverse conditions caused by various patho-
gens, including viruses, bacteria, parasites, fungi, and toxins. This 
group includes diseases such as Buruli ulcer, Chagas disease, den-
gue, chikungunya, human African trypanosomiasis, leishmaniasis, 
lymphatic filariasis, and many others.18,30

Studies report that NTDs have a significant prevalence, espe-
cially in tropical regions, affecting almost two billion people. Ap-
proximately one-sixth of the world’s population is impacted by 
one or more NTDs.30–32 The pathogens involved in NCDs can be 
multidrug-resistant, and their rapid adaptation to new antibiotics 
poses a significant challenge for scientists and medical profes-
sionals.36–39 Furthermore, the medications available for treating 
Non-Cholera Diarrhea (NCDs) generally cause several side ef-
fects, leading to severe discomfort in patients. Various therapeu-
tic approaches have been developed for treating Trypanosoma 
brucei (T. brucei), Trypanosoma cruzi (T. cruzi), and Leishmania 
dovani.40–42 In addition to sleeping sickness treatment,43 there are 
notable gaps that can be explored through the development of new 
therapeutic techniques.

Another important NCD is Zika, and studies have been con-
ducted to discover new substances for its treatment. Research has 
identified dehydroandrographolide derivatives with hindered C19 
ether as potent anti-ZIKV agents with inhibitory activity against 
ZIKV NS5 MTase; however, this substance has not yet been con-
jugated to nanomaterials.44–46

Thus, nanomaterials conjugated with drugs represent alterna-
tive tools for developing new therapeutic strategies. Given that 
the process of developing new medicines is time-consuming and 
expensive, theranostic tools based on conjugates of nanomaterials 
and peptides become attractive options for addressing NTDs.17,47

Nanomaterials conjugated with drugs hold immense prom-
ise in tackling the unique challenges posed by NTDs.48,49 These 
diseases, prevalent in impoverished regions with limited health-
care infrastructure, often lack effective treatments and diagnostic 
tools. Nanotechnology offers a transformative approach, enabling 
targeted drug delivery and enhanced therapeutic efficacy. By en-
capsulating drugs within nanomaterials, these complexes can navi-
gate biological barriers, such as the blood-brain barrier in diseases 
like sleeping sickness, ensuring precise delivery to affected tis-
sues while minimizing systemic toxicity. This targeted approach 
improves treatment outcomes and reduces the overall burden on 
healthcare systems by optimizing drug efficacy and minimizing 
the need for repeated dosing.50

Furthermore, integrating nanomaterials with drugs facilitates 
the development of multifunctional theranostic platforms. These 
platforms combine diagnostic capabilities with therapeutic inter-
ventions, enabling early disease detection and tailored treatment 
strategies. Nanoparticles functionalized with targeting ligands can 

specifically recognize disease biomarkers, allowing for early-stage 
diagnosis before clinical symptoms manifest. Simultaneously, 
these nanocarriers deliver therapeutic agents directly to disease 
sites, enhancing treatment precision and efficacy. This dual func-
tionality accelerates disease management and supports personal-
ized medicine approaches, paving the way for more efficient and 
patient-centric healthcare solutions in resource-limited settings af-
fected by NTDs.51,52

This study explores cutting-edge advancements in nanoparticle-
peptide conjugates for diagnosing and treating NTDs. It reviews 
primary databases to identify gaps in current knowledge and high-
light opportunities for developing novel therapeutic strategies. 
Nanomaterial-conjugated peptides represent a promising avenue 
for overcoming the limitations of traditional treatments, offering 
hope for improved outcomes in managing NTDs.

Nanomaterials to neglected tropical diseases
According to the WHO, NTDs comprise a group of 20 diverse 
conditions caused by various pathogens, including viruses, bac-
teria, parasites, fungi, and toxins (WHO, 6.15). These diseases 
are recognized as indicators of poor socioeconomic conditions 
and manifestations of poverty within vulnerable and marginalized 
communities. They can lead to devastating socioeconomic conse-
quences, adversely affecting health and quality of life, particularly 
for women and children.53,54

The epidemiology of NTDs is complex and often linked to 
environmental factors. Many of these diseases are vector-borne, 
involve animal reservoirs, and have intricate life cycles, posing 
significant challenges for public health control efforts.54

NTDs cause a wide range of health effects, some reversible and 
others irreversible, often leading to permanent disabilities, disfig-
urement, and malnutrition.55 In 2013, these diseases were respon-
sible for an estimated 152,000 deaths and contributed to 48 million 
disability-adjusted life years globally. The socioeconomic impacts 
include reduced work capacity, impaired child development, de-
creased school attendance and learning, and substantial treatment 
costs.56

To combat NTDs, the WHO estimates that over 1.7 billion 
people worldwide require annual prevention and treatment inter-
ventions for at least one of these diseases. A new strategic plan 
for NTDs, covering 2021–2030, aims to scale up essential inter-
ventions through public health approaches, including preventive 
chemotherapy, case management, vector control, veterinary public 
health, and improvements in water, sanitation, and hygiene (6). 
The global targets for 2030 include a 90% reduction in the number 
of people needing NTD treatment, a 75% decrease in NTD-related 
disability-adjusted life years, the elimination of at least one NTD in 
100 countries, and the eradication of dracunculiasis and yaws.53,57

Early diagnosis and treatment are crucial to achieving these am-
bitious goals and effectively controlling and preventing the spread 
of NTDs. The following sections will address these efforts in more 
detail.

Traditional treatments often need replacement due to toxicity, 
and ongoing studies are exploring ways to optimize these therapies, 
as shown in Figure 1. (I) For T. cruzi, traditional treatments include 
Benznidazole and Nifurtimox. Researchers are investigating opti-
mized treatments, including Lychnopholide (LYC) nanocapsules, 
sulfonamide TcCA inhibitor nanoemulsions, and a nanoformula-
tion of a nanoconjugate with gold nanoparticles (AuNPs) and 3-n-
propyl(2-amino-4-methyl)pyridinium chloride (SiAMPy+ Cl−), an 
organic-inorganic hybrid silsesquioxane (AuNPs-SiAMPy+)). For 
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leishmaniasis, traditional treatments include pentavalent antimoni-
al salts, such as sodium stibogluconate and meglumine antimonate. 
However, the emergence of drug-resistant parasites has prompted 
the exploration of alternatives, such as pentamidine, paromomycin 
(antimicrobials), amphotericin B, fluconazole, ketoconazole (anti-
fungals), and miltefosine (antitumor).

However, these alternatives also exhibit toxicity. As a result, 
researchers are developing chitosan nanoparticles conjugated 
with a nitric oxide (NO) donor, S-nitrosothiol (CSNPs), and 
myrrh silver nanoparticles (MSNPs) to optimize treatment. (II) 
Human African Trypanosomiasis (HAT), caused by T. brucei, is 
subdivided into T. brucei gambiense and T. brucei rhodesiense. 
Six medications, including Pentamidine, Eflornithine, Nifur-
timox, and Fexinidazole, are used for gambiense-HAT, while 
Suramin and Melarsoprol are used for rhodesiense-HAT. New 
research is exploring the use of polymeric nanoparticle systems, 
such as polylactic acid nanoparticles (PLA-NPs), to act as de-
livery vehicles for sesquiterpene lactones (STLs). Another study 
involving Pentamidine aimed to assess whether polycaprolactone 
(PCL) NPs and phosphatidylcholine liposomes are effective in 
vitro. (III) Ectoparasites, such as Pediculus humanus and Sar-
coptes scabiei, are traditionally treated with topical applications 
of permethrin or oral administration of ivermectin. However, due 
to the development of drug resistance in these ectoparasites, new 
treatments are being explored, such as ivermectin-loaded nano-
particles (IVM-NPs) for topical use.

Parasitics

Protozoa

Chagas disease
Chagas disease is caused by the flagellated protozoan Trypano-
soma cruzi. After infection, immunocompetent patients enter the 
acute phase, characterized by high parasitemia and mild febrile 
symptoms. After two to three months, the disease transitions to 
the chronic phase, where serology is positive, but parasitemia be-
comes microscopically undetectable. The chronic phase persists 
throughout life in the absence of effective treatment. Although 
many individuals remain asymptomatic, 20% develop cardiomyo-
pathy or mega syndromes of the digestive tract.58,59

Accurate diagnosis of acute and congenital Chagas disease re-
quires the direct visualization of trypomastigotes in the blood, pri-
marily by microscopy, and occasionally in other body fluids, with 
sensitivity ranging from 34% to 85%.

In congenital infection, a diagnosis can be made after eight 
months using serology. Concentration methods, such as microhe-
matocrit and the Strout method, significantly increase diagnostic 
efficacy, achieving rates greater than 95%.59,60 The chronic phase 
of the disease is characterized by low and intermittent parasitemia. 
Therefore, diagnosis in this phase relies on serological tests that 
detect IgG antibodies against T. cruzi. Indirect fluorescence, in-
direct hemagglutination, and ELISA are the most widely used se-

Fig. 1. Traditional and optimized treatments for diseases caused by Trypanosoma cruzi, Leishmania spp., Trypanosoma brucei, Pediculus humanus, and 
Sarcoptes scabiei. MSNP, Multi-Subunit Nuclease Proteins; NONP, Non-Nucleoside Organic Compounds; PLA NP, Poly(lactic acid) Nanoparticles.
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rological methods for accurately diagnosing Chagas disease.59,60

Point-of-care tests (POCs) are invaluable for monitoring Cha-
gas disease serodiagnosis in resource-limited areas, where mar-
ginalized populations often have restricted access to healthcare. 
A study from New York described the development of a lateral 
flow assay (LFA) using 150 nm gold nanoparticles (AuNPs) conju-
gated to synthetic recombinant T. cruzi antigens, which encompass 
antigens present in different morphological stages of the parasite. 
This assay eliminates the need for multiple serological tests. The 
LFA demonstrated a sensitivity of 83% and a specificity of 95%, 
providing analytical performance comparable to conventional se-
rological assays, with minimal sample processing and a response 
time of just 15 m. Furthermore, the AuNPs-LFA platform repre-
sents a significant reduction in both cost and time.61

The new Chagas urine nanoparticle test, known as Chunap, was 
developed for diagnosis via urine and tested in cases of congenital 
infection and HIV co-infection.58,62 A novel nanotechnology utiliz-
es nanoporous particles containing trypan blue in their inner core 
to concentrate and preserve antigens in urine. Chunap has shown 
excellent agreement with standard diagnostic tests in the direct di-
agnosis of congenital Chagas disease. The nanoporous structure 
of the particles enables dimensional sieving, allowing proteins to 
penetrate the interior based on their molecular weight and shape.

The trypan blue within the particles captures proteins with ex-
tremely high affinity within minutes.58,62 These nanoporous parti-
cles were successfully used to sequester, concentrate, and preserve 
T. cruzi antigens in urine.58,62 Chunap demonstrated a sensitivity of 
91.3% and a specificity of 96.5% for congenital samples, with sen-
sitivity levels comparable to qPCR,47,63 making it a promising tool 
for improving the Chagas diagnostic algorithm in clinical settings.

Treatment with antitrypanosomal medications is essential for 
all forms of Chagas disease. Only two drugs, Benznidazole *and 
Nifurtimox, are licensed for treatment.59,64,65 However, the use of 
Nifurtimox is limited due to significant side effects, including re-
nal and hepatic failure, as well as adverse neurological and gas-
trointestinal effects. Benznidazole’s most commonly reported side 
effect is hypersensitivity. Additionally, the development of drug 
resistance poses a significant challenge to the successful treatment 
of Chagas disease.66,67

In this context, a research group from Brazil aimed to increase 
the bioavailability of a new antitrypanosomal agent, LYC, a lipo-
philic sesquiterpene lactone through nanoencapsulation.68,69 The 
antitrypanosomal efficacy of LYC in vivo had already been dem-
onstrated by the same group.69,70 The study involved the develop-
ment of polymeric nanocapsules containing LYC and used high-
performance liquid chromatography with ultraviolet detection to 
quantify LYC kinetics in mouse plasma samples.

Encapsulation of LYC was achieved with a high payload, and 
the nanocapsules remained stable after storage, with sizes suitable 
for intravenous administration. The formulation effectively con-
trolled the release of LYC into plasma and significantly increased 
body exposure, while protecting LYC from degradation in mouse 
plasma.68

Thinking about inhibitors of sulfonamide carbonic anhydrase 
(CA, EC 4.2.1.1), which target the α-class enzyme of T. cruzi, an-
other study reported that T. cruzi encodes an α-CA enzyme called 
TcCA. Although many sulfonamides inhibited this enzyme in 
vitro, they did not inhibit parasite growth in vivo, likely due to 
the poor permeability of sulfonamides across the protozoan’s bio-
logical membranes. To address this, the research group formulated 
sulfonamides, which are highly effective as TcCA inhibitors, in 
nanoemulsions (NEs) to increase their bioavailability and penetra-

bility through membranes.
Sulfonamide TcCA inhibitors formulated as NEs in clove oil 

have been reported to inhibit the growth of T. cruzi ex vivo, showing 
potential as a new class of antitrypanosomal drugs. These effects 
are probably due to the enzyme inhibitor’s increased permeation 
through the NE formulation, which interferes with the pathogen’s 
life cycle by inhibiting pH regulation or carboxylation reactions.71

In 2022, the Lima group conducted a study involving AuNPs 
for both diagnosis and treatment. Considering the promising char-
acteristics of silsesquioxane polyelectrolytes for the synthesis of 
nanomaterials and the remarkable properties of AuNPs, they for-
mulated a nanoconjugate with AuNPs, 3-n-propyl(2-amino-4-me-
thyl)pyridinium chloride (SiAMPy+ Cl−), and organic-inorganic 
hybrid silsesquioxane (AuNPs-SiAMPy+).

There was no toxicity of AuNPs-SiAMPy+ in human white and 
red blood cells, highlighting the potential of these nanoconjugates 
for future studies investigating their therapeutic and biomedical 
properties. These nanoconjugates have also shown promise in con-
structing electrochemical biosensor devices capable of detecting 
antibodies related to Chagas disease in serum samples.72

Nanomaterials conjugated with drugs represent a critical ad-
vancement in addressing the diagnostic and therapeutic challenges 
posed by Chagas disease. This neglected tropical disease, caused 
by Trypanosoma cruzi, manifests in varying clinical presentations, 
from acute to chronic phases, and often leads to severe cardiac 
or gastrointestinal complications. Current diagnostic methods rely 
heavily on serological tests, which may lack sensitivity or require 
complex procedures, particularly in resource-limited settings. Na-
notechnology offers innovative solutions, such as the development 
of LFAs using gold nanoparticles (AuNPs) conjugated with T. 
cruzi antigens. These LFAs provide rapid and reliable results com-
parable to traditional serological assays but with minimal sample 
processing and shorter incubation times, making them suitable for 
point-of-care testing in endemic regions.

Additionally, nanomaterials facilitate novel therapeutic ap-
proaches for Chagas disease treatment. For example, nanocapsules 
containing LYC, a potent antitrypanosomal agent, have been de-
veloped to enhance drug stability and efficacy. These nanocapsules 
ensure sustained drug release and improved bioavailability, poten-
tially overcoming the limitations associated with conventional 
treatments like Benznidazole and Nifurtimox, which often induce 
severe side effects and face challenges of drug resistance. Fur-
thermore, NEs formulated with sulfonamide carbonic anhydrase 
inhibitors have shown promising results by enhancing drug perme-
ability across T. cruzi membranes, effectively inhibiting parasite 
growth in vitro.

In summary, the integration of nanomaterials with drugs is 
revolutionizing Chagas disease diagnosis through innovative di-
agnostic tools and improving therapeutic outcomes by enhancing 
drug delivery and efficacy. These advancements underscore the 
transformative potential of nanotechnology in combating neglect-
ed tropical diseases, offering new avenues for more effective and 
targeted management strategies in clinical practice.

Leishmaniasis
Leishmaniasis is a group of infectious parasitic diseases caused by 
protozoa from various species of Leishmania. It is primarily found 
in three clinical forms: visceral, cutaneous, and mucocutaneous, 
which differ in their immunopathologies and mortality rates.73,74

In diagnosing leishmaniasis, methods must effectively analyze 
the clinical form of the disease, identify asymptomatic or co-
infected cases, and differentiate between individuals infected by 
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other parasitic diseases.35,75,76 Conventional diagnostic methods 
for leishmaniasis include parasitological, molecular, and immu-
nological approaches. Parasitological methods involve detecting 
Leishmania through direct microscopy, histopathology, and para-
site culture. Several molecular techniques, such as polymerase 
chain reaction (PCR), offer high sensitivity and specificity. Immu-
nological tests such as direct agglutination, ELISA, and immuno-
chromatographic assays are also widely used for the diagnosis of 
leishmaniasis.77,78

Similar to diagnostic methods for T. cruzi, new tests for detect-
ing leishmaniasis can be based on the characteristics of POCs. 
Two distinct research groups have explored the use of AuNPs.79,80 
The first group utilized AuNPs as nanocarriers, conjugated with 
casein for amperometric detection of L. infantum on screen-print-
ed carbon electrodes. The conjugation interacts with Leishmania 
parasites by leveraging the specificity of the interaction between 
casein and GP63 proteins.81 The second group conjugated AuNPs 
with polyethylene glycol, immobilizing a thiolated sequence of 
the Leishmania genome on gold electrodes for hybridization with 
cDNA. This approach led to the development of an ultrasensitive 
DNA-based biosensor for detecting Leishmania spp.80

Continuing the development of genosensors, a research group 
conducted two experiments. In the first, they developed a one-
step Loop-Mediated Isothermal Amplification Assay (LAMP) us-
ing dual indicators to detect Leishmania DNA in the buffy coat 
of asymptomatic HIV patients. The technique employed fluores-
cence and colorimetric precipitation, with the AuNP probe serving 
as a second indicator in a closed-tube SYBR Safe-LAMP assay. 
This simplified and cost-effective approach allowed rapid visual 
interpretation in minutes, achieving high sensitivity (94.1%) and 
specificity (97.1%).82 In the second experiment, a similar one-step 
LAMP reaction combined SYBR Safe with a gold nanoparticle 
probe to detect and semi-quantify Leishmania in buffy coats. No-
tably, this technique was implemented on paper, with sensitivity 
and specificity of 95.5% and 100%, respectively.83

Historically, treatment for leishmaniasis has relied on the pen-
tavalent antimonial salts sodium stibogluconate and meglumine 
antimonate for visceral, cutaneous, and mucocutaneous forms. 
These are the primary antileishmanial compounds used. However, 
the emergence of drug-resistant parasites has led to the exploration 
of alternatives, such as pentamidine, paromomycin (antimicrobi-
als), amphotericin B, fluconazole, ketoconazole (antifungals), and 
miltefosine (an antitumor agent). These alternatives are currently 
the only available medications but are associated with limitations, 
including side effects, toxicity, drug resistance, and prolonged ad-
ministration requirements.73,78 Given these challenges, exploring 
new therapeutic strategies and alternatives is essential to address 
treatment gaps globally.

Brazilian researchers have identified chitosan nanoparticles that 
release NO, which could be used to treat cutaneous leishmaniasis. 
These chitosan NPs were conjugated with an NO donor, CSNPs. 
Encapsulation of the NO donor in CSNPs prevents degradation 
of the molecule and allows for controlled NO release. The study 
demonstrated the potential of NO nanoparticles for effective dose-
dependent inactivation of L. amazonenses in vitro.84

Ongoing research into the antileishmanial effects of silver na-
noparticles includes a study from Saudi Arabia where researchers 
synthesized MSNPs and evaluated their efficacy in inhibiting the 
proliferation of promastigotes in vitro and in treating lesions in 
BALB/c mice in vivo. MSNPs significantly reduced the viability 
of Leishmania promastigotes and, when applied topically for 21 
days, contributed to the healing of skin lesions.85

Nanomaterials conjugated with drugs are crucial in advancing 
the diagnosis and treatment of leishmaniasis. Current diagnostic 
methods, including parasitological, molecular, and immunological 
approaches, have limitations in sensitivity and specificity. Nano-
technology offers innovative solutions, such as developing biosen-
sors with AuNPs for sensitive detection of Leishmania. Research-
ers have utilized AuNPs conjugated with casein and polyethylene 
glycol for amperometric and DNA-based biosensors, demonstrat-
ing enhanced specificity and rapid detection capabilities suitable 
for point-of-care settings. These advancements improve diagnos-
tic accuracy and facilitate early detection in asymptomatic cases, 
which is critical for effective disease management and control.

In addition to diagnostics, nanomaterials hold promise for over-
coming therapeutic challenges in leishmaniasis treatment. Con-
ventional treatments heavily rely on antimonial salts and other 
compounds that are prone to drug resistance and adverse effects. 
Novel approaches include chitosan nanoparticles loaded with nitric 
oxide donors, which exhibit potent in vitro activity against Leish-
mania while offering controlled, sustained drug release profiles. 
Similarly, silver nanoparticles synthesized from myrrh have shown 
efficacy in inhibiting parasite proliferation and promoting wound 
healing in animal models. These nanotechnological innovations 
not only enhance the effectiveness of current treatments but also 
pave the way for developing alternative therapies with improved 
safety profiles and shorter treatment durations, addressing critical 
gaps in global leishmaniasis management.

HAT/sleeping sickness
HAT, also known as Sleeping Sickness, is caused by the protozoan 
parasite Trypanosoma brucei, which is subdivided into T. brucei 
gambiense and T. brucei rhodesiense. Both subspecies are trans-
mitted by infected tsetse flies, found in sub-Saharan Africa, with 
only a few species responsible for transmitting the disease.86,87 
After injection, trypanosomes initially multiply in subcutaneous, 
blood, and lymphatic tissues, constituting the hemolymphatic or 
first stage, which presents non-specific symptoms. Subsequently, 
the parasites overcome the blood-brain barrier, reaching the cen-
tral nervous system and causing the meningoencephalic or second 
stage of the disease.86,88 Given the biphasic nature of HAT patho-
genesis, treatment depends on the clinical evaluation of patients 
and whether the parasites have crossed the blood-brain barrier, 
which is determined through diagnosis.

The diagnosis of HAT involves the observation of parasites in 
peripheral blood smears; however, this often requires challenging 
serological methods. The Card Agglutination Test for Trypanoso-
miasis (CATT), widely used in high-prevalence regions, is prob-
lematic in low-prevalence areas due to a high rate of false posi-
tive results. Advanced molecular techniques, such as PCR, have 
been tested but face significant technical challenges and are not 
practical under field conditions, similar to CATT.86,88 Despite our 
efforts, we could not identify literature on diagnostics using nano-
materials.

Current pharmacological therapy for HAT is based on drugs 
developed many years ago, known for their aggravated toxicity 
in advanced stages of the disease. Early treatment improves the 
prospects for a cure, requiring continuous evaluation for up to 
24 months due to the possibility of viable parasites persisting af-
ter treatment. In the second stage, medications that can cross the 
blood-brain barrier are necessary.88,89

Antitrypanosomal drugs are donated to the WHO by manufac-
turers and distributed free of charge to endemic countries, follow-
ing the new WHO guidelines for gambiense HAT issued in 2019. 
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For gambiense HAT, six medications can be used, including Penta-
midine (intramuscular, generally well tolerated), Eflornithine (in-
travenous), Nifurtimox (oral), and Fexinidazole (oral). In contrast, 
for rhodesiense HAT, Suramin (intravenous) is used in the first 
stage but can cause adverse effects such as nephrotoxicity and al-
lergic reactions. In the second stage, Melarsoprol (intravenous), an 
arsenic derivative, presents many adverse effects, the most severe 
being reactive encephalopathy, with a fatality rate of 3–10%.89,90

New research involving nanomaterials is being conducted to 
address the problems of existing antitrypanosomal drugs. Drug-
loaded NPs often exhibit superior properties compared to unencap-
sulated drugs, such as improved pharmacokinetics and prolonged, 
controlled drug release. In this context, a polymeric nanoparticle 
system composed of PLA-NPs is being developed to serve as vehi-
cles for STLs, demonstrating the antitrypanosomal efficacy of the 
resulting formulation.91

Another slightly more advanced study using Pentamidine aimed 
to analyze in vitro whether PCL NPs and phosphatidylcholine li-
posomes improved drug transport across the blood-brain barrier 
and explored the feasibility of reducing pentamidine toxicity. Re-
searchers observed that liposomal nanocarriers performed better, 
transporting a higher percentage of the pentamidine dose than PCL 
nanoparticles and unencapsulated drug delivery.92

Nanomaterials conjugated with drugs are increasingly recog-
nized for their potential to address the diagnostic and therapeutic 
challenges associated with HAT, commonly known as Sleeping 
Sickness. Diagnosis of HAT traditionally relies on parasitological 
methods like peripheral blood smears, which can be insensitive 
and impractical in low-prevalence settings. Nanotechnology of-
fers a promising avenue to enhance diagnostic accuracy through 
innovative approaches such as biosensors and nanoparticle-based 
assays, yet specific applications in HAT diagnostics remain under-
explored.

In therapeutics, existing treatments for HAT suffer from severe 
toxicity and limited efficacy, particularly in the advanced stages 
of the disease, where parasites breach the blood-brain barrier. 
Nanoparticle formulations, such as PLA-NPs loaded with STLs, 
demonstrate the potential to overcome these challenges. These 
nanoformulations improve drug pharmacokinetics, enable con-
trolled release, and enhance drug delivery efficiency to target sites, 
including the central nervous system. Furthermore, nanocarriers 
like phosphatidylcholine liposomes show promise in enhancing 
the transport of medications across the blood-brain barrier, there-
by reducing toxicity and improving therapeutic outcomes. These 
advancements underscore the critical role of nanomaterials in ad-
vancing treatment options for HAT, offering hope for improved 
patient outcomes and disease management strategies in endemic 
regions.

Ectoparasites
Ectoparasites are pathogens that typically infect only the superfi-
cial layers of the skin. Within this group, epidermal parasitic skin 
diseases stand out as a family of diseases of significant public 
health importance. These parasitic diseases are characterized by 
their restriction to the superficial layers of the skin during parasite-
host interactions. They are prevalent in resource-limited settings 
and are associated with significant morbidity.93

Lice and scabies are caused by Pediculus humanus and Sar-
coptes scabiei, respectively, and have a global distribution. In 
contrast, cutaneous larva migrans and tungiasis, caused by Larva 
migrans and Tunga penetrans, are more common in hot climates. 
Reliable data on the epidemiology, immunology, therapy, and biol-

ogy of epidermal parasitic skin diseases are still limited. Although 
the general prevalence of ectoparasitosis in the population is low, 
it can be significantly higher in vulnerable population groups.93,94

Each ectoparasitosis has its own specific treatment considera-
tions. However, as the typical symptoms of these diseases—pri-
marily related to scabies and lice—are directly associated with 
ectoparasite infestations, the main objective of treatment is to 
eliminate the organisms. The first-choice treatment is the topical 
application of permethrin or the oral administration of ivermectin. 
Other second-line alternatives include malathion and topical iver-
mectin.95–97

IVM has been associated with severe side effects at high dos-
es, especially when accidentally ingested. To minimize systemic 
side effects, topical treatment of dermatoses has proven to be 
a favorable option. The topical application of IVM is practical 
and has comparable costs in treating infections such as scabies 
or lice.98,99

To address this issue, attempts have been made to develop and 
optimize IVM-NPs. IVM-NP formulations have been success-
fully prepared, and release studies indicate slow and sustained 
release patterns, providing an advantage for topical application. 
The drug’s in vitro skin penetration tests revealed that IVM-NPs 
penetrated the skin more quickly than the ivermectin suspension, 
opening possibilities for the topical application of IVM-loaded 
NPs.98,99

Nanomaterials loaded with drugs play a crucial role in address-
ing the treatment challenges posed by epidermal parasitic skin 
diseases, such as scabies and lice. These diseases are prevalent in 
resource-limited regions and can cause significant morbidity. Tra-
ditional treatments, often involving permethrin or oral ivermectin, 
aim to eradicate ectoparasites but may be associated with systemic 
side effects, particularly with high doses of oral medications like 
ivermectin. The development of IVM-NPs represents a promising 
advancement. These nanoparticles exhibit controlled and sustained 
release properties, enhancing drug delivery efficiency and mini-
mizing systemic exposure, thus potentially reducing the adverse 
effects of conventional treatments. Moreover, IVM-NPs have 
enhanced skin penetration capabilities compared to traditional 
formulations, suggesting their suitability for topical application, 
which is advantageous in effectively managing skin infections like 
scabies and lice.

In addition to improving drug delivery and reducing systemic 
side effects, nanotechnology offers novel opportunities for en-
hancing the efficacy of treatments against epidermal parasitic skin 
diseases. Researchers are exploring new avenues to optimize ther-
apeutic outcomes by encapsulating drugs like ivermectin within 
nanoparticles. These advancements are particularly significant for 
vulnerable populations where ectoparasitosis is prevalent, offer-
ing safer and more effective treatment options that could improve 
public health outcomes. As research continues to refine nanopar-
ticle formulations and evaluate their clinical efficacy, integrating 
nanotechnology into dermatological treatments holds promise for 
transforming the management of epidermal parasitic skin diseases, 
ultimately benefiting affected individuals worldwide.

Neglected tropical diseases require diagnostic tests that can op-
erate under various local conditions and detect infections at differ-
ent stages. Figure 2 shows the methodology used with nanomateri-
als conjugated with drugs.

The development of new devices is always necessary. (a) T. cru-
zi is primarily diagnosed through the visualization of the parasite 
using techniques such as blood smear, microhematocrit, the Strout 
method, and indirect immunofluorescence, as well as serological 
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methods like ELISA. A new immunochromatographic test that in-
corporates antigens from the different morphological stages of T. 
cruzi, conjugated with AuNPs, is capable of detecting antibodies.

In the search for a less invasive test capable of detecting the 
disease in its congenital form, the Chunap was developed (Fig. 2). 
This technology uses nanoporous particles containing trypan blue 
in the inner core to concentrate and preserve antigens in urine. (b) 
For leishmaniasis, conventional diagnostic methods include para-
sitological, molecular, and immunological approaches.

Regarding new POC methods, electrochemical biosensors are 
increasingly being used, as seen in Figure 2: (1) an immunosen-
sor with screen-printed carbon electrodes, which uses AuNPs 
as nanocarriers for casein to identify the parasite in the sample 
through the GP63 protein; and (2) a genosensor conjugated with 
AuNPs and polyethylene glycol, where the thiolated sequence 
of the Leishmania genome was immobilized on the surface. An-
other development in genosensors is a one-step LAMP assay. 
This technique used fluorescence and colorimetric precipitation, 
with the AuNP probe acting as a second indicator in a closed-
tube SYBR Safe-LAMP assay. (c) Diagnostic methods for T. 
brucei require more attention. (I) The diagnosis of HAT involves 
observing parasites and the CATT. (II) Despite our efforts, we 
could not identify any literature on the diagnosis of HAT using 
nanomaterials.

Future directions
The integration of nanomaterials with drugs for theranostic appli-
cations targeting neglected tropical diseases (NTDs) represents an 
exciting and transformative direction in global health innovation. 
Given the significant challenges posed by NTDs, including limited 
treatment options, inadequate diagnostic tools, and the adverse ef-
fects of conventional drugs, there is an urgent need for novel strat-

egies to address these gaps.
Nanotechnology offers a unique platform for advancing both 

diagnostic and therapeutic capabilities. The conjugation of nano-
materials with drugs has demonstrated the potential to enhance 
drug efficacy, minimize toxicity, and enable dual functionality for 
disease diagnosis and treatment. Future research should prioritize 
the design and optimization of nanomaterial-drug complexes tai-
lored to specific NTDs, focusing on improving the pharmacokinet-
ics and bioavailability of therapeutic agents. This approach could 
significantly enhance treatment outcomes, reduce side effects, and 
improve patient compliance.

Another critical area for future exploration is the development 
of targeted delivery systems using nanotechnology. By engineer-
ing nanomaterials with high specificity for NTD-causing patho-
gens or infected tissues, researchers can reduce off-target effects 
and maximize therapeutic efficiency. Furthermore, integrating na-
notechnology with advanced diagnostic techniques could enable 
early and accurate detection of NTDs, addressing one of the most 
pressing challenges in managing these diseases.

Collaboration across disciplines will be essential to accelerate 
these advancements. Partnerships between researchers, clinicians, 
and industry stakeholders can facilitate the translation of nanotech-
nology-based innovations from the laboratory to real-world appli-
cations. Moreover, efforts to address the ethical, regulatory, and 
cost-related challenges associated with nanotechnology adoption 
in low-resource settings are crucial to ensure equitable access to 
these groundbreaking solutions.

As the field of nanotechnology continues to evolve, it holds 
immense promise for revolutionizing the management of NTDs. 
The development of multifunctional nanomaterials for theranostic 
applications could significantly impact global health by providing 
more effective, safer, and sustainable solutions for these histori-
cally neglected diseases.

Fig. 2. Traditional Diagnosis and New POCs for Diseases Caused by Trypanosoma cruzi, Leishmania spp., and Trypanosoma brucei. CAAT, Cellular Au-
tomated Analysis Technique; LAMP, Loop-mediated Isothermal Amplification; LFA,  Lymphocyte Function-Associated Antigen; POC, Point-of-care tests.
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Conclusions
Integrating nanomaterials with drugs for theranostic applications 
targeting NTDs represents a pivotal and innovative approach. 
NTDs present significant global health challenges, often exacer-
bated by limited treatment options and adverse drug effects. This 
study highlights the diverse applications of nanoparticles and their 
conjugation with drugs, showcasing their potential to revolutionize 
therapeutic strategies. These advancements address the shortcom-
ings of current medications by leveraging nanotechnology, offer-
ing enhanced therapeutic efficacy and reduced treatment-related 
complications. The development of nanomaterial-drug complexes 
not only improves treatment outcomes but also mitigates the tox-
icity associated with conventional drugs. This transformative ap-
proach marks a promising frontier in managing neglected tropical 
diseases and holds substantial potential for advancements in global 
public health. These findings underscore the critical role of na-
nomaterials in advancing therapeutic methodologies, paving the 
way for the development of novel theranostic compounds poised 
to significantly improve patient outcomes and quality of life. As 
research in this field continues to evolve, nanotechnology stands 
at the forefront of innovation, offering hope for more effective 
and sustainable solutions in combating neglected tropical diseases 
worldwide.
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